

32 Mbit (4Mb x8 or 2Mb x16, Boot Block) 3V Supply Flash Memory

FEATURES SUMMARY

- SUPPLY VOLTAGE
 - V_{CC} = 2.7V to 3.6V for Program, Erase and Read
 - VPP =12V for Fast Program (optional)
- ACCESS TIME: 70, 90ns
- PROGRAMMING TIME
 - 10µs per Byte/Word typical
- 67 MEMORY BLOCKS
 - 1 Boot Block (Top or Bottom Location)
 - 2 Parameter and 64 Main Blocks
- PROGRAM/ERASE CONTROLLER
 - Embedded Byte/Word Program algorithms
- ERASE SUSPEND and RESUME MODES
 - Read and Program another Block during Erase Suspend
- UNLOCK BYPASS PROGRAM COMMAND
 Faster Production/Batch Programming
- V_{PP}/WP PIN for FAST PROGRAM and WRITE PROTECT
- TEMPORARY BLOCK UNPROTECTION MODE
- COMMON FLASH INTERFACE
 - 64 bit Security Code
- LOW POWER CONSUMPTION
 - Standby and Automatic Standby
- 100,000 PROGRAM/ERASE CYCLES per BLOCK
- ELECTRONIC SIGNATURE
 - Manufacturer Code: 0020h
 - Top Device Code M29W320DT: 22CAh
 - Bottom Device Code M29W320DB: 22CBh

Figure 1. Packages

TABLE OF CONTENTS

SUMMARY DESCRIPTION	5
Figure 2. Logic Diagram	5
Table 1. Signal Names	
Figure 3. TSOP Connections.	
Figure 4. TFBGA Connections (Top view through package)	
Figure 5. Block Addresses (x8)	
Figure 6. Block Addresses (x16)	9
SIGNAL DESCRIPTIONS	0
Address Inputs (A0-A20)	0
Data Inputs/Outputs (DQ0-DQ7)	0
Data Inputs/Outputs (DQ8-DQ14) 1	
Data Input/Output or Address Input (DQ15A–1)1	
Chip Enable (E)	
Output Enable (G)	
Write Enable (W)	
V _{PP} /Write Protect (V _{PP} /WP)	
Reset/Block Temporary Unprotect (RP)1	
Ready/Busy Output (RB)	
Byte/Word Organization Select (BYTE)	
V _{CC} Supply voltage (2.7 v to 3.6 v)	
BUS OPERATIONS	2
Bus Read	
Bus Write	
Output Disable	
Standby	
Automatic Standby	2
Special Bus Operations	12
Electronic Signature	12
Block Protect and Chip Unprotect	12
Block Protect and Chip Unprotect	12
Table 2. Bus Operations, BYTE = V _{IL}	
Table 3. Bus Operations, BYTE = V _{IH} 1	3
COMMAND INTERFACE	14
Read/Reset Command	14
Auto Select Command	
Program Command	
Unlock Bypass Command	
Unlock Bypass Program Command	5
Unlock Bypass Reset Command	5

Chip Erase Command.	[,]	15
Block Erase Command	[.]	15
Erase Suspend Command	'	15
Erase Resume Command.	'	16
Table 4. Commands, 16-bit mode, BYTE = V _{IH}		
Table 5. Commands, 8-bit mode, BYTE = V_{IL}		
Table 6. Program, Erase Times and Program, Erase Endurance Cycles		
STATUS REGISTER	,	19
Data Polling Bit (DQ7).		10
Toggle Bit (DQ6)		
Erase Timer Bit (DQ3).		
Alternative Toggle Bit (DQ2)		
Table 7. Status Register Bits		
Figure 7. Data Polling Flowchart		
Figure 8. Data Toggle Flowchart	2	20
MAXIMUM RATING		24
Table 8. Absolute Maximum Ratings.		21
DC and AC PARAMETERS		22
Table 9. Operating and AC Measurement Conditions.		
Figure 9. AC Measurement I/O Waveform		
Figure 10. AC Measurement Load Circuit		
Table 10. Device Capacitance.		
Table 11. DC Characteristics.		
Figure 11. Read Mode AC Waveforms	2	24
Table 12. Read AC Characteristics	2	24
Figure 12. Write AC Waveforms, Write Enable Controlled	2	25
Table 13. Write AC Characteristics, Write Enable Controlled	2	25
Figure 13. Write AC Waveforms, Chip Enable Controlled	2	26
Table 14. Write AC Characteristics, Chip Enable Controlled		26
Figure 14. Reset/Block Temporary Unprotect AC Waveforms		
Table 15. Reset/Block Temporary Unprotect AC Characteristics		
Figure 15. Accelerated Program Timing Waveforms.		
		•••
PACKAGE MECHANICAL		
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline		
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data		
TFBGA63 – 63 ball array, 0.8 mm pitch, Package Outline, Bottom view		29
TFBGA63 – 63 ball array, 0.8 mm pitch, Package Mechanical Data	2	29
PART NUMBERING		ያህ
Table 16. Ordering Information Scheme	?	30

REVISION HISTORY	42
Table 26. Document Revision History	42
APPENDIX A. BLOCK ADDRESS TABLE	
Table 17. Top Boot Block Addresses, M29W320DT	31
Table 18. Bottom Boot Block Addresses, M29W320DB	
APPENDIX B. COMMON FLASH INTERFACE (CFI)	
Table 19. Query Structure Overview	
Table 20. CFI Query Identification String	33
Table 21. CFI Query System Interface Information	
Table 22. Device Geometry Definition	35
Table 23. Primary Algorithm-Specific Extended Query Table	36
Table 24. Security Code Area	36
APPENDIX C. BLOCK PROTECTION	
Programmer Technique	
In-System Technique	
Table 25. Programmer Technique Bus Operations, BYTE = V_{IH} or V_{IL}	
Figure 16. Programmer Equipment Block Protect Flowchart	38
Figure 17. Programmer Equipment Chip Unprotect Flowchart	
Figure 18. In-System Equipment Block Protect Flowchart	40
Figure 19. In-System Equipment Chip Unprotect Flowchart	41

SUMMARY DESCRIPTION

The M29W320D is a 32 Mbit (4Mb x8 or 2Mb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase operation can be detected and any error conditions identified. The command

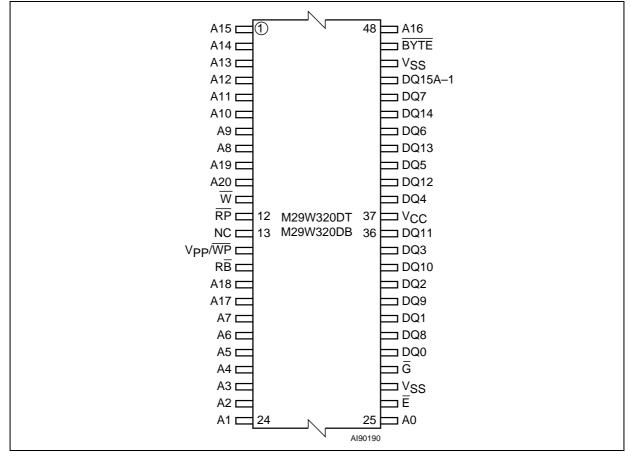
Figure 2. Logic Diagram

۲7/

set required to control the memory is consistent with JEDEC standards.

The blocks in the memory are asymmetrically arranged, see Figures 5 and 6 and Tables 17 and 18. The first or last 64 Kbytes have been divided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32 Kbyte is a small Main Block where the application may be stored.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.

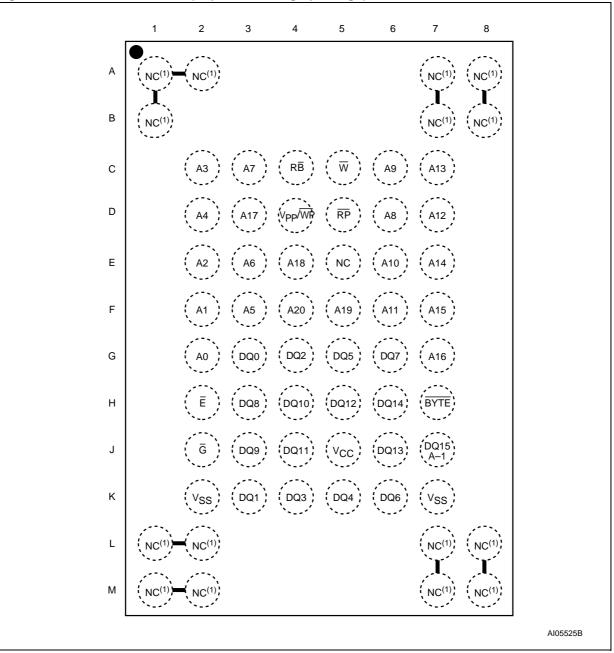
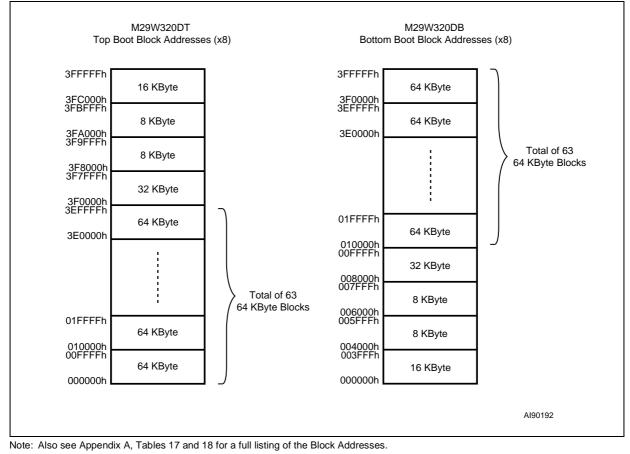

The memory is offered in TSOP48 (12 x 20mm) and TFBGA63 (7x11mm, 0.8mm pitch) packages. The memory is supplied with all the bits erased (set to 1).

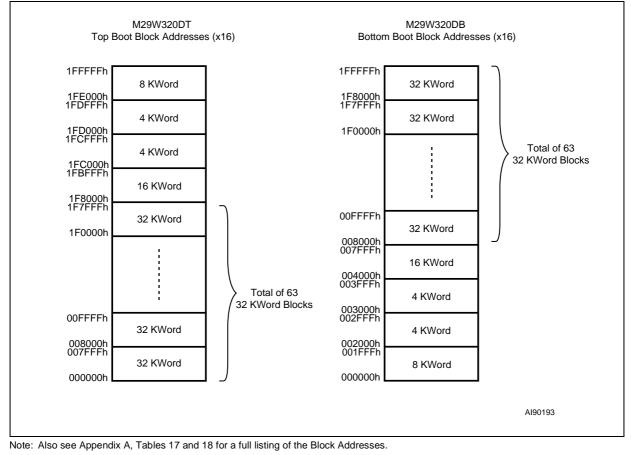
A0-A20	Address Inputs
DQ0-DQ7	Data Inputs/Outputs
DQ8-DQ14	Data Inputs/Outputs
DQ15A-1	Data Input/Output or Address Input
Ē	Chip Enable
G	Output Enable
W	Write Enable
RP	Reset/Block Temporary Unprotect
RB	Ready/Busy Output
BYTE	Byte/Word Organization Select
V _{CC}	Supply Voltage
V _{PP} /WP	V _{PP} /Write Protect
V _{SS}	Ground
NC	Not Connected Internally

Table 1. Signal Names

5/43

Figure 3. TSOP Connections


Figure 4. TFBGA Connections (Top view through package)

Note: 1. Balls are shorted together via the substrate but not connected to the die.

Figure 5. Block Addresses (x8)

Figure 6. Block Addresses (x16)

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram, and Table 1, Signal Names, for a brief overview of the signals connected to this device.

Address Inputs (A0-A20). The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine.

Data Inputs/Outputs (DQ0-DQ7). The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the internal state machine.

Data Inputs/Outputs (DQ8-DQ14). The Data I/O outputs the data stored at the selected address during a Bus Read operation when BYTE is High, V_{IH} . When BYTE is Low, V_{IL} , these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored.

Data Input/Output or Address Input (DQ15A-1).

When \overrightarrow{BYTE} is High, V_{IH}, this pin behaves as a <u>Data</u> Input/Output pin (as DQ8-DQ14). When BYTE is Low, V_{IL}, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when BYTE is High and references to the Address Inputs to include this pin when BYTE is Low except when stated explicitly otherwise.

Chip Enable (Ē). The Chip Enable, \overline{E} , activates the memory, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High, V_{IH}, all other pins are ignored.

Output Enable (\overline{G}). The Output Enable, \overline{G} , controls the Bus Read operation of the memory.

Write Enable (\overline{W}). The Write Enable, \overline{W} , controls the Bus Write operation of the memory's Command Interface.

Vpp/Write Protect (Vpp/WP). The Vpp/Write Protect pin provides two functions. The Vpp function allows the memory to use an external high voltage power supply to reduce the time required for Unlock Bypass Program operations. The Write Protect function provides a hardware method of protecting the 16 Kbyte Boot Block. The Vpp/Write Protect pin must not be left floating or unconnected.

When V_{PP} /Write Protect is Low, V_{IL} , the memory protects the 16 Kbyte Boot Block; Program and Erase operations in this block are ignored while V_{PP} /Write Protect is Low.

When V_{PP} /Write Protect is High, V_{IH} , the memory reverts to the previous protection status of the 16 Kbyte boot block. Program and Erase operations can now modify the data in the 16 Kbyte Boot Block unless the block is protected using Block Protection.

When V_{PP}/Write Protect is raised to V_{PP} the memory automatically enters the Unlock Bypass mode. When V_{PP}/Write Protect returns to V_{IH} or V_{IL} normal operation resumes. During Unlock Bypass Program operations the memory draws I_{PP} from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the Command Interface section. The transitions from V_{IH} to V_{PP} and from V_{PP} to V_{IH} must be slower than t_{VHVPP}, see Figure 15.

Never raise V_{PP} /Write Protect to V_{PP} from any mode except Read mode, otherwise the memory may be left in an indeterminate state.

A 0.1 μ F capacitor should be connected between the V_{PP}/Write Protect pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program, I_{PP}.

Reset/Block Temporary Unprotect (RP). The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have been protected.

Note that if V_{PP}/\overline{WP} is at V_{IL} , then the 16 KByte outermost boot block will remain protect even if RP is at V_{ID} .

A Hardware Reset is achieved by holding Reset/ Block Temporary Unprotect Low, V_{IL}, for at least t_{PLPX}. After Reset/Block Temporary Unprotect goes High, V_{IH}, the memory will be ready for Bus Read and Bus Write operations after t_{PHEL} or t_{RHEL}, whichever occurs last. See the Ready/Busy Output section, Table 15 and Figure 14, Reset/ Temporary Unprotect AC Characteristics for more details.

Holding $\overline{\text{RP}}$ at V_{ID} will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from V_{IH} to V_{ID} must be slower than t_{PHPHH}.

Ready/Busy Output (RB). The Ready/Busy pin is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, V_{OL} . Ready/Busy is high-impedance during Read mode, Auto Select mode and Erase Suspend mode.

Note that if V_{PP}/\overline{WP} is at V_{IL} , then the 16 KByte outermost boot block will remain protect even if RP is at V_{ID} .

After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy becomes high-impedance. See Table 15 and Figure 14, Reset/Temporary Unprotect AC Characteristics.

The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.

Byte/Word Organization Select (BYTE). The Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus modes of the memory. When Byte/Word Organization Select is Low, V_{IL} , the memory is in x8 mode, when it is High, V_{IH} , the memory is in x16 mode.

 V_{CC} Supply Voltage (2.7V to 3.6V). V_{CC} provides the power supply for all operations (Read, Program and Erase).

The Command Interface is disabled when the V_{CC} Supply Voltage is less than the Lockout Voltage, V_{LKO}. This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/ Erase Controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid.

A 0.1 μ F capacitor should be connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Program and Erase operations, I_{CC3}.

 $V_{\text{SS}}\,\text{Ground.}\,\,V_{\text{SS}}$ is the reference for all voltage measurements.

<u>____</u>

BUS OPERATIONS

There are five standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby and Automatic Standby. See Tables 2 and 3, Bus Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Bus Read. Bus Read operations read from the memory cells, or specific registers in the Command Interface. A valid Bus Read operation involves setting the desired address on the Address Inputs, applying a Low signal, V_{IL} , to Chip Enable and Output Enable and keeping Write Enable High, V_{IH} . The Data Inputs/Outputs will output the value, see Figure 11, Read Mode AC Waveforms, and Table 12, Read AC Characteristics, for details of when the output becomes valid.

Bus Write. Bus Write operations write to the Command Interface. A valid Bus Write operation begins by setting the desired address on the Address Inputs. The Address Inputs are latched by the Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V_{IH}, during the whole Bus Write operation. See Figures 12 and 13, Write AC Waveforms, and Tables 13 and 14, Write AC Characteristics, for details of the timing requirements.

Output Disable. The Data Inputs/Outputs are in the high impedance state when Output Enable is High, V_{IH} .

Standby. When Chip Enable is High, V_{IH} , the memory enters Standby mode and the Data In-

puts/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to the Standby Supply Current, I_{CC2} , Chip Enable should be held within $V_{CC} \pm 0.2V$. For the Standby current level see Table 11, DC Characteristics.

During program or erase operations the memory will continue to use the Program/Erase Supply Current, I_{CC3} , for Program or Erase operations until the operation completes.

Automatic Standby. If CMOS levels ($V_{CC} \pm 0.2V$) are used to drive the bus and the bus is inactive for 300ns or more the memory enters Automatic Standby where the internal Supply Current is reduced to the Standby Supply Current, I_{CC2} . The Data Inputs/Outputs will still output data if a Bus Read operation is in progress.

Special Bus Operations

Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block Protection. These bus operations are intended for use by programming equipment and are not usually used in applications. They require V_{ID} to be applied to some pins.

Electronic Signature. The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying the signals listed in Tables 2 and 3, Bus Operations.

Block Protect and Chip Unprotect. Each block can be separately protected against accidental Program or Erase. The whole chip can be unprotected to allow the data inside the blocks to be changed.

Block Protect and Chip Unprotect operations are described in Appendix C.

۲/

Onenetien	-	ĒG		Address Inputs	Data Inputs/Outputs			
Operation	E	G	W	DQ15A-1, A0-A20	DQ14-DQ8	DQ7-DQ0		
Bus Read	VIL	VIL	VIH	Cell Address	Hi-Z	Data Output		
Bus Write	VIL	VIH	V _{IL}	Command Address	Hi-Z	Data Input		
Output Disable	Х	VIH	VIH	Х	Hi-Z	Hi-Z		
Standby	VIH	Х	Х	Х	Hi-Z	Hi-Z		
Read Manufacturer Code	VIL	V _{IL}	VIH	$\begin{array}{l} A0 = V_{IL}, A1 = V_{IL}, A9 = V_{ID}, \\ Others V_{IL} or V_{IH} \end{array}$	Hi-Z	20h		
Read Device Code	VIL	V _{IL}	VIH		Hi-Z	CAh (M29W320DT) CBh (M29W320DB)		

Table 2. Bus Operations, $\overline{\text{BYTE}} = V_{\text{IL}}$

Note: $X = V_{IL}$ or V_{IH} .

Table 3. Bus Operations, $\overline{\text{BYTE}} = V_{\text{IH}}$

Operation	Ē	G	w	Address Inputs A0-A20	Data Inputs/Outputs DQ15A-1, DQ14-DQ0
Bus Read	VIL	VIL	VIH	Cell Address	Data Output
Bus Write	VIL	VIH	VIL	Command Address	Data Input
Output Disable	Х	VIH	VIH	Х	Hi-Z
Standby	VIH	Х	Х	Х	Hi-Z
Read Manufacturer Code	VIL	VIL	VIH	$\begin{array}{l} A0 = V_{IL}, A1 = V_{IL}, A9 = V_{ID}, \\ Others V_{IL} or V_{IH} \end{array}$	0020h
Read Device Code	VIL	VIL	VIH	$\begin{array}{l} A0 = V_{IH}, A1 = V_{IL}, A9 = V_{ID}, \\ Others V_{IL} or V_{IH} \end{array}$	22CAh (M29W320DT) 22CBh (M29W320DB)

Note: $X = V_{IL}$ or V_{IH} .

COMMAND INTERFACE

All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. Failure to observe a valid sequence of Bus Write operations will result in the memory returning to Read mode. The long command sequences are imposed to maximize data security.

The address used for the commands changes depending on whether the memory is in 16-bit or 8bit mode. See either Table 4, or 5, depending on the configuration that is being used, for a summary of the commands.

Read/Reset Command. The Read/Reset command returns the memory to its Read mode where it behaves like a ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register. Either one or three Bus Write operations can be used to issue the Read/Reset command.

The Read/Reset Command can be issued, between Bus Write cycles before the start of a program or erase operation, to return the device to read mode. Once the program or erase operation has started the Read/Reset command is no longer accepted. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend.

Auto Select Command. The Auto Select command is used to read the Manufacturer Code, the Device Code and the Block Protection Status. Three consecutive Bus Write operations are required to issue the Auto Select command. Once the Auto Select command is issued the memory remains in Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/ Reset commands are accepted in Auto Select mode, all other commands are ignored.

From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation with $A0 = V_{IL}$ and $A1 = V_{IL}$. The other address bits may be set to either V_{IL} or V_{IH} . The Manufacturer Code for STMicroelectronics is 0020h.

The Device Code can be read using a Bus Read operation with $A0 = V_{IH}$ and $A1 = V_{IL}$. The other address bits may be set to either V_{IL} or V_{IH} . The Device Code for the M29W320DT is 22CAh and for the M29W320DB is 22CBh.

The Block Protection Status of each block can be read using a Bus Read operation with $A0 = V_{IL}$, $A1 = V_{IH}$, and A12-A20 specifying the address of the block. The other address bits may be set to either V_{IL} or V_{IH} . If the addressed block is protected then 01h is output on Data Inputs/Outputs DQ0-DQ7, otherwise 00h is output.

Read CFI Query Command. The Read CFI Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. This

command is valid when the device is in the Read Array mode, or when the device is in Autoselected mode.

One Bus Write cycle is required to issue the Read CFI Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area.

The Read/Reset command must be issued to return the device to the previous mode (the Read Array mode or Autoselected mode). A second Read/ Reset command would be needed if the device is to be put in the Read Array mode from Autoselected mode.

See Appendix B, Tables 19, 20, 21, 22, 23 and 24 for details on the information contained in the Common Flash Interface (CFI) memory area.

Program Command. The Program command can be used to program a value to one address in the memory array at a time. The command requires four Bus Write operations, the final write operation latches the address and data in the internal state machine and starts the Program/Erase Controller.

If the address falls in a protected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given.

During the program operation the memory will ignore all commands. It is not possible to issue any command to abort or pause the operation. Typical program times are given in Table 6. Bus Read operations during the program operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details.

After the program operation has completed the memory will return to the Read mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

Note that the Program command cannot change a bit set at '0' back to '1'. One of the Erase Commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

Unlock Bypass Command. The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory. When the cycle time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these commands. Three Bus Write operations are required to issue the Unlock Bypass command.

Once the Unlock Bypass command has been issued the memory will only accept the Unlock By-

pass Program command and the Unlock Bypass Reset command. The memory can be read as if in Read mode.

The memory offers accelerated program operations through the V_{PP}/Write Protect pin. When the system asserts V_{PP} on the V_{PP}/Write Protect pin, the memory automatically enters the Unlock Bypass mode. The system may then write the twocycle Unlock Bypass program command sequence. The memory uses the higher voltage on the V_{PP}/Write Protect pin, to accelerate the Unlock Bypass Program operation.

Never raise V_{PP} /Write Protect to V_{PP} from any mode except Read mode, otherwise the memory may be left in an indeterminate state.

Unlock Bypass Program Command. The Unlock Bypass Program command can be used to program one address in the memory array at a time. The command requires two Bus Write operations, the final write operation latches the address and data in the internal state machine and starts the Program/Erase Controller.

The Program operation using the Unlock Bypass Program command behaves identically to the Program operation using the Program command. The operation cannot be aborted, the Status Register is read and protected blocks cannot be programmed. Errors must be reset using the Read/ Reset command, which leaves the device in Unlock Bypass Mode. See the Program command for details on the behavior.

Unlock Bypass Reset Command. The Unlock Bypass Reset command can be used to return to Read/Reset mode from Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from Unlock Bypass Mode.

Chip Erase Command. The Chip Erase command can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase Command and start the Program/Erase Controller.

If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protected the Chip Erase operation appears to start but will terminate within about 100μ s, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the erase operation the memory will ignore all commands, including the Erase Suspend command. It is not possible to issue any command to abort the operation. Typical chip erase times are given in Table 6. All Bus Read operations during the Chip Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the Chip Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read Mode.

The Chip Erase Command sets all of the bits in unprotected blocks of the memory to '1'. All previous data is lost.

Block Erase Command. The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase Controller about 50µs after the last Bus Write operation. Once the Program/Erase Controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50µs of the last block. The 50µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register section for details on how to identify if the Program/ Erase Controller has started the Block Erase operation.

If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the Block Erase operation appears to start but will terminate within about 100μ s, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the Block Erase operation the memory will ignore all commands except the Erase Suspend command. Typical block erase times are given in Table 6. All Bus Read operations during the Block Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details.

After the Block Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

The Block Erase Command sets all of the bits in the unprotected selected blocks to '1'. All previous data in the selected blocks is lost.

Erase Suspend Command. The Erase Suspend Command may be used to temporarily suspend a Block Erase operation and return the memory to Read mode. The command requires one Bus Write operation.

The Program/Erase Controller will suspend within the Erase Suspend Latency Time (refer to Table 6 for value) of the Erase Suspend Command being issued. Once the Program/Erase Controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase Controller starts) then the Erase is suspended immediately and will start immediately when the Erase Resume Command is issued. It is not possible to select any further blocks to erase after the Erase Resume.

During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. The Status Register is not read and no error condition is given. Reading from blocks that are being erased will output the Status Register. It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be accepted.

Erase Resume Command. The Erase Resume command must be used to restart the Program/ Erase Controller after an Erase Suspend. The device must be in Read Array mode before the Resume command will be accepted. An erase can be suspended and resumed more than once.

Block Protect and Chip Unprotect Commands. Each block can be separately protected against accidental Program or Erase. The whole chip can be unprotected to allow the data inside the blocks to be changed.

Block Protect and Chip Unprotect operations are described in Appendix C.

	ч					Bus	Write	Operati	ions				
Command	Length	1st		2nd		3rd		4th		5th		6th	
	Ľ	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read/Reset	1	Х	F0										
Reau/Resei	3	555	AA	2AA	55	Х	F0						
Auto Select	3	555	AA	2AA	55	555	90						
Program	4	555	AA	2AA	55	555	A0	PA	PD				
Unlock Bypass	3	555	AA	2AA	55	555	20						
Unlock Bypass Program	2	х	A0	PA	PD								
Unlock Bypass Reset	2	Х	90	Х	00								
Chip Erase	6	555	AA	2AA	55	555	80	555	AA	2AA	55	555	10
Block Erase	6+	555	AA	2AA	55	555	80	555	AA	2AA	55	BA	30
Erase Suspend	1	Х	B0										
Erase Resume	1	Х	30										
Read CFI Query	1	55	98										

Table 4. Commands, 16-bit mode, BYTE = VIH

Note: X Don't Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal.

The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are Don't Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.

Read/Reset. After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is ignored during algorithm execution.

Auto Select. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.

Program, Unlock Bypass Program, Chip Erase, Block Erase. After these commands read the Status Register until the Program/ Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations until Timeout Bit is set.

Unlock Bypass. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.

Unlock Bypass Reset. After the Unlock Bypass Reset command read the memory as normal until another command is issued. Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal.

Erase Resume. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode.

CFI Query. Command is valid when device is ready to read array data or when device is in autoselected mode.

	Ч	Bus Write Operations											
Command	Length	1st		2nd		3rd		4th		5th		6th	
	Ľ	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read/Reset	1	Х	F0										
Read/Reset	3	AAA	AA	555	55	Х	F0						
Auto Select	3	AAA	AA	555	55	AAA	90						
Program	4	AAA	AA	555	55	AAA	A0	PA	PD				
Unlock Bypass	3	AAA	AA	555	55	AAA	20						
Unlock Bypass Program	2	х	A0	PA	PD								
Unlock Bypass Reset	2	Х	90	Х	00								
Chip Erase	6	AAA	AA	555	55	AAA	80	AAA	AA	555	55	AAA	10
Block Erase	6+	AAA	AA	555	55	AAA	80	AAA	AA	555	55	BA	30
Erase Suspend	1	Х	B0										
Erase Resume	1	Х	30										
Read CFI Query	1	AA	98										

Table 5. Commands, 8-bit mode, $\overline{\text{BYTE}} = V_{\text{IL}}$

Note: X Don't Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are Don't Care. DQ15A–1 is A–1 when BYTE is V_{IL} or DQ15 when BYTE is V_{IH}.

Read/Reset. After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is ignored during algorithm execution.

Auto Select. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.

Program, Unlock Bypass Program, Chip Erase, Block Erase. After these commands read the Status Register until the Program/ Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations until Timeout Bit is set.

Unlock Bypass. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.

Unlock Bypass Reset. After the Unlock Bypass Reset command read the memory as normal until another command is issued.

Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal.

Erase Resume. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode.

CFI Query. Command is valid when device is ready to read array data or when device is in autoselected mode.

Table 6. Program, Erase Times and Program, Erase Endurance Cycles

Parameter	Min	Тур ⁽¹⁾	Typical after 100k W/E Cycles ⁽¹⁾	Max	Unit
Chip Erase		40	40	200	S
Block Erase (64 KBytes)		0.8		6	S
Erase Suspend Latency Time		15		25	μs
Program (Byte or Word)		10		200	μs
Accelerated Program (Byte or Word)		8		150	μs
Chip Program (Byte by Byte)		40		200	S
Chip Program (Word by Word)		20		100	S
Program/Erase Cycles (per Block)	100,000				cycles

۲/

Note: 1. $T_A = 25^{\circ}C$, $V_{CC} = 3.3V$.

STATUS REGISTER

Bus Read operations from any address always read the Status Register during Program and Erase operations. It is also read during Erase Suspend when an address within a block being erased is accessed.

The bits in the Status Register are summarized in Table 7, Status Register Bits.

Data Polling Bit (DQ7). The Data Polling Bit can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has responded to an Erase Suspend. The Data Polling Bit is output on DQ7 when the Status Register is read.

During Program operations the Data Polling Bit outputs the complement of the bit being programmed to DQ7. After successful completion of the Program operation the memory returns to Read mode and Bus Read operations from the address just programmed output DQ7, not its complement.

During Erase operations the Data Polling Bit outputs '0', the complement of the erased state of DQ7. After successful completion of the Erase operation the memory returns to Read Mode.

In Erase Suspend mode the Data Polling Bit will output a '1' during a Bus Read operation within a block being erased. The Data Polling Bit will change from a '0' to a '1' when the Program/Erase Controller has suspended the Erase operation.

Figure 7, Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A Valid Address is the address being programmed or an address within the block being erased.

Toggle Bit (DQ6). The Toggle Bit can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has responded to an Erase Suspend. The Toggle Bit is output on DQ6 when the Status Register is read.

During Program and Erase operations the Toggle Bit changes from '0' to '1' to '0', etc., with successive Bus Read operations at any address. After successful completion of the operation the memory returns to Read mode.

During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has suspended the Erase operation.

If any attempt is made to erase a protected block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 100µs. If any attempt is made to program a protected block or a suspended block, the operation is aborted, no error is signalled and DQ6 toggles for approximately $1\mu s.$

Figure 8, Data Toggle Flowchart, gives an example of how to use the Data Toggle Bit.

Error Bit (DQ5). The Error Bit can be used to identify errors detected by the Program/Erase Controller. The Error Bit is set to '1' when a Program, Block Erase or Chip Erase operation fails to write the correct data to the memory. If the Error Bit is set a Read/Reset command must be issued before other commands are issued. The Error bit is output on DQ5 when the Status Register is read.

Note that the Program command cannot change a bit set to '0' back to '1' and attempting to do so will set DQ5 to '1'. A Bus Read operation to that address will show the bit is still '0'. One of the Erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

Erase Timer Bit (DQ3). The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation during a Block Erase command. Once the Program/Erase Controller starts erasing the Erase Timer Bit is set to '1'. Before the Program/Erase Controller starts the Erase Timer Bit is set to '0' and additional blocks to be erased may be written to the Command Interface. The Erase Timer Bit is output on DQ3 when the Status Register is read.

Alternative Toggle Bit (DQ2). The Alternative Toggle Bit can be used to monitor the Program/ Erase controller during Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status Register is read.

During Chip Erase and Block Erase operations the Toggle Bit changes from '0' to '1' to '0', etc., with successive Bus Read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to Read mode.

During Erase Suspend the Alternative Toggle Bit changes from '0' to '1' to '0', etc. with successive Bus Read operations from addresses within the blocks being erased. Bus Read operations to addresses within blocks not being erased will output the memory cell data as if in Read mode.

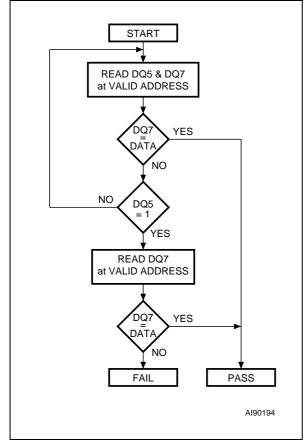
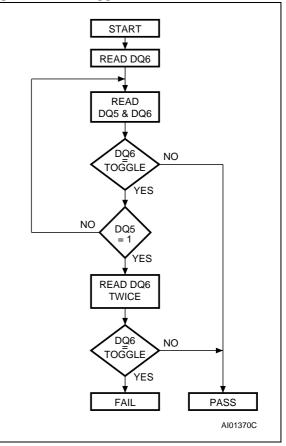

After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be used to identify which block or blocks have caused the error. The Alternative Toggle Bit changes from '0' to '1' to '0', etc. with successive Bus Read Operations from addresses within blocks that have not erased correctly. The Alternative Toggle Bit does not change if the addressed block has erased correctly.

Table 7. Status Register Bits


Operation	Address	DQ7	DQ6	DQ5	DQ3	DQ2	RB
Program	Any Address	DQ7	Toggle	0	-	-	0
Program During Erase Suspend	Any Address	DQ7	Toggle	0	-	-	0
Program Error	Any Address	DQ7	Toggle	1	-	-	0
Chip Erase	Any Address	0	Toggle	0	1	Toggle	0
Block Erase before	Erasing Block	0	Toggle	0	0	Toggle	0
timeout	Non-Erasing Block	0	Toggle	0	0	No Toggle	0
Block Erase	Erasing Block	0	Toggle	0	1	Toggle	0
DIOCK EIASE	Non-Erasing Block	0	Toggle	0	1	No Toggle	0
Erase Suspend	Erasing Block	1	No Toggle	0	-	Toggle	1
	Non-Erasing Block		Data	read as no	ormal		1
Erase Error	Good Block Address	0	Toggle	1	1	No Toggle	0
	Faulty Block Address	0	Toggle	1	1	Toggle	0

Note: Unspecified data bits should be ignored.

Figure 8. Data Toggle Flowchart

MAXIMUM RATING

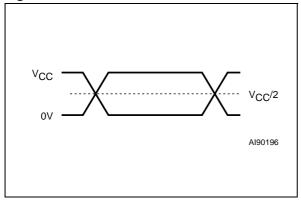
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 8. Absolute Maximum Ratings

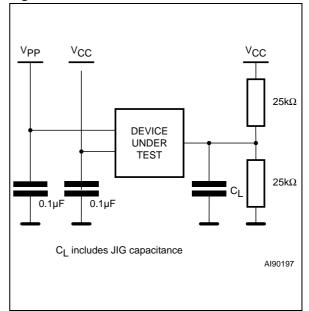
Symbol	Parameter	Min	Max	Unit
T _{BIAS}	Temperature Under Bias	-50	125	°C
T _{STG}	Storage Temperature	-65	150	°C
V _{IO}	Input or Output Voltage ^(1,2)	-0.6	V _{CC} +0.6	V
V _{CC}	Supply Voltage	-0.6	4	V
V _{ID}	Identification Voltage	-0.6	13.5	V
V _{PP}	Program Voltage	-0.6	13.5	V

Note: 1. Minimum voltage may undershoot to -2V during transition and for less than 20ns during transitions.

2. Maximum voltage may overshoot to V_{CC} +2V during transition and for less than 20ns during transitions.


DC AND AC PARAMETERS

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 9, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.


Table 9. Operating and AC Measurement Conditions

		M29W320D							
Parameter	7	70	9	Unit					
	Min	Max	Min	Max					
V _{CC} Supply Voltage	3.0	3.6	2.7	3.6	V				
Ambient Operating Temperature	-40	85	-40	85	°C				
Load Capacitance (CL)	:	30	3	0	pF				
Input Rise and Fall Times		10		10	ns				
Input Pulse Voltages	0 tc	V _{CC}	0 to V _{CC}		V				
Input and Output Timing Ref. Voltages	Vc	;c/2	V _C	_C /2	V				

Figure 9. AC Measurement I/O Waveform

Figure 10. AC Measurement Load Circuit

Á7/

Table 10. Device Capacitance

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V		12	pF

Note: Sampled only, not 100% tested.

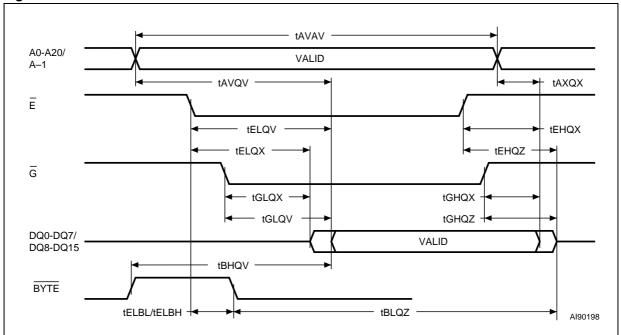

Symbol	Parameter	Test Co	ndition	Min	Тур.	Max	Unit
ILI	Input Leakage Current	$0V \le V_{IN}$	$0V \le V_{IN} \le V_{CC}$			±1	μA
ILO	Output Leakage Current	0V ≤ V _{OL}	$JT \leq V_{CC}$			±1	μA
I _{CC1}	Supply Current (Read)	$\overline{E} = V_{IL},$ f = 6			5	10	mA
I _{CC2}	Supply Current (Standby)	$\overline{E} = V_{CC} \pm 0.2V,$ $\overline{RP} = V_{CC} \pm 0.2V$			35	100	μA
	Supply Current (Program/	Program/ Erase	V _{PP} /WP = V _{IL} or V _{IH}			20	mA
	Erase)	Controller active	V _{PP} /WP = V _{PP}			20	mA
VIL	Input Low Voltage		•	-0.5		0.8	V
VIH	Input High Voltage			0.7V _{CC}		V _{CC} +0.3	V
V _{PP}	Voltage for V _{PP} / WP Program Acceleration	V _{CC} = 3.0)V ±10%	11.5		12.5	V
IPP	Current for V _{PP} /WP Program Acceleration	V _{CC} = 3.0)V ±10%			10	mA
V _{OL}	Output Low Voltage	I _{OL} = 1	.8mA			0.45	V
Vон	Output High Voltage	I _{OH} = –	100µA	V _{CC} –0.4			V
VID	Identification Voltage			11.5		12.5	V
I _{ID}	Identification Current	A9 =	V _{ID}			100	μA
V _{LKO}	Program/Erase Lockout Supply Voltage			1.8		2.3	V

Table 11. DC Characteristics

Note: 1. Sampled only, not 100% tested.

57

23/43

Figure 11. Read Mode AC Waveforms

Table 12. Read AC Characteristics

Cumbal	A 14	lé Demonster		T (0)		/320D	
Symbol	Alt	Parameter	Test Cond		70	90	Unit
t _{AVAV}	t _{RC}	Address Valid to Next Address Valid	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$	Min	70	90	ns
t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$	Max	70	90	ns
t _{ELQX} ⁽¹⁾	t _{LZ}	Chip Enable Low to Output Transition	$\overline{G} = V_{IL}$	Min	0	0	ns
t _{ELQV}	t _{CE}	Chip Enable Low to Output Valid	$\overline{G} = V_{IL}$	Max	70	90	ns
t _{GLQX} ⁽¹⁾	tolz	Output Enable Low to Output Transition	$\overline{E} = V_{IL}$	Min	0	0	ns
tGLQV	t _{OE}	Output Enable Low to Output Valid	$\overline{E} = V_{IL}$	Max	30	35	ns
t _{EHQZ} ⁽¹⁾	t _{HZ}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	Max	25	30	ns
t _{GHQZ} ⁽¹⁾	t _{DF}	Output Enable High to Output Hi-Z	$\overline{E} = V_{IL}$	Max	25	30	ns
t _{EHQX} t _{GHQX} t _{AXQX}	tон	Chip Enable, Output Enable or Address Transition to Output Transition		Min	0	0	ns
t _{ELBL} t _{ELBH}	telfl telfh	Chip Enable to BYTE Low or High	Enable to BYTE Low or High		5	5	ns
tBLQZ	t _{FLQZ}	BYTE Low to Output Hi-Z		Max	25	30	ns
t _{BHQV}	t _{FHQV}	BYTE High to Output Valid		Max	30	40	ns

Note: 1. Sampled only, not 100% tested.

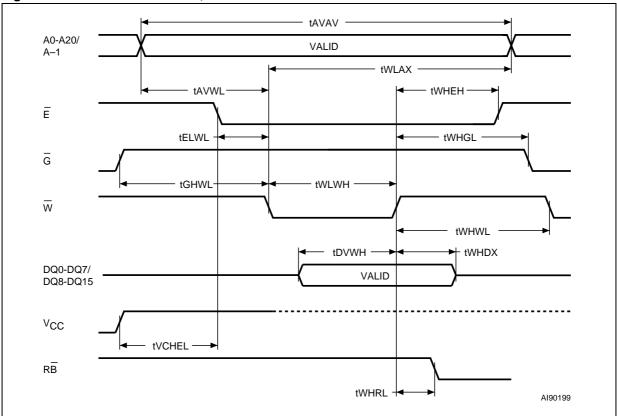


Figure 12. Write AC Waveforms, Write Enable Controlled

Table 13. Write AC Characteristics	Write Enable Controlled
Table 13. Write AC Characteristics	, write Litable Controlleu

Symbol	Alt	Parameter	M29W320D		Unit	
Symbol Alt		Farameter	70	90	Unit	
t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	70	90	ns
t _{ELWL}	t _{CS}	Chip Enable Low to Write Enable Low	Min	0	0	ns
twlwh	t _{WP}	Write Enable Low to Write Enable High	Min	45	50	ns
t _{DVWH}	t _{DS}	Input Valid to Write Enable High	Min	45	50	ns
t _{WHDX}	t _{DH}	Write Enable High to Input Transition	Min	0	0	ns
tWHEH	tсн	Write Enable High to Chip Enable High	Min	0	0	ns
t _{WHWL}	t _{WPH}	Write Enable High to Write Enable Low	Min	30	30	ns
t _{AVWL}	t _{AS}	Address Valid to Write Enable Low	Min	0	0	ns
t _{WLAX}	t _{AH}	Write Enable Low to Address Transition	Min	45	50	ns
t _{GHWL}		Output Enable High to Write Enable Low	Min	0	0	ns
twhgl	tOEH	Write Enable High to Output Enable Low	Min	0	0	ns
t _{WHRL} ⁽¹⁾	tBUSY	Program/Erase Valid to RB Low	Max	30	35	ns
t VCHEL	t _{VCS}	V _{CC} High to Chip Enable Low	Min	50	50	μs

Note: 1. Sampled only, not 100% tested.

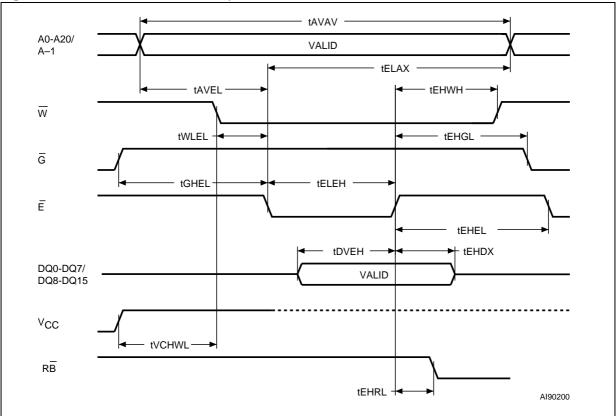


Figure 13. Write AC Waveforms, Chip Enable Controlled

Table 14. Write AC Characteristics	Chip Enable Controlled

Symbol	Alt	Parameter		M29W320D		Unit	
Symbol	AIL	Farameter			90	Unit	
t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	70	90	ns	
tWLEL	t _{WS}	Write Enable Low to Chip Enable Low	Min	0	0	ns	
tELEH	tCP	Chip Enable Low to Chip Enable High	Min	45	50	ns	
t _{DVEH}	t _{DS}	Input Valid to Chip Enable High	Min	45	50	ns	
t _{EHDX}	t _{DH}	Chip Enable High to Input Transition	Min	0	0	ns	
tehwh	t _{WH}	Chip Enable High to Write Enable High	Min	0	0	ns	
t _{EHEL}	t _{CPH}	Chip Enable High to Chip Enable Low	Min	30	30	ns	
tAVEL	t _{AS}	Address Valid to Chip Enable Low	Min	0	0	ns	
t _{ELAX}	t _{AH}	Chip Enable Low to Address Transition	Min	45	50	ns	
t _{GHEL}		Output Enable High Chip Enable Low	Min	0	0	ns	
tEHGL	tOEH	Chip Enable High to Output Enable Low	Min	0	0	ns	
t _{EHRL} ⁽¹⁾	t _{BUSY}	Program/Erase Valid to RB Low	Max	30	35	ns	
tvchwl	t _{VCS}	V _{CC} High to Write Enable Low	Min	50	50	μs	

57

Note: 1. Sampled only, not 100% tested.

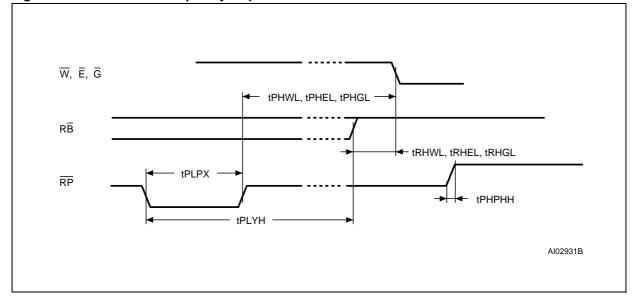
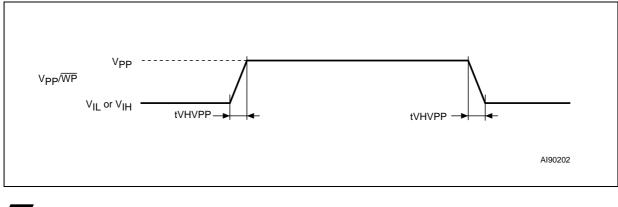
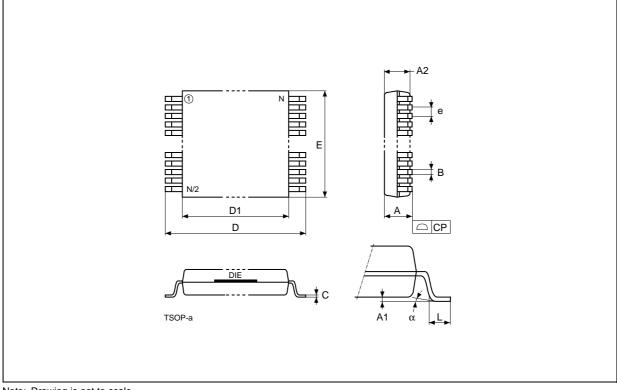
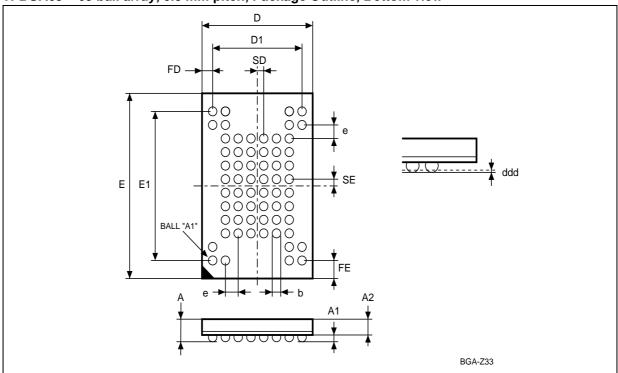



Figure 14. Reset/Block Temporary Unprotect AC Waveforms

Symbol	Alt	Parameter	M29V	/320D	Unit	
Symbol Alt		Falameter	70	90	Omt	
t _{PHWL} ⁽¹⁾ t _{PHEL} t _{PHGL} ⁽¹⁾	t _{RH}	RP High to Write Enable Low, Chip Enable Low, Output Enable Low	Min	50	50	ns
t _{RHWL} ⁽¹⁾ t _{RHEL} ⁽¹⁾ t _{RHGL} ⁽¹⁾	t _{RB}	RB High to Write Enable Low, Chip Enable Low, Output Enable Low	Min	0	0	ns
t _{PLPX}	t _{RP}	RP Pulse Width	Min	500	500	ns
tplyh ⁽¹⁾	t READY	RP Low to Read Mode	Max	10	10	μs
t _{PHPHH} ⁽¹⁾	t _{VIDR}	RP Rise Time to VID	Min	500	500	ns
t _{VHVPP} ⁽¹⁾		V_{PP} Rise and Fall Time	Min	250	250	ns


Note: 1. Sampled only, not 100% tested.

PACKAGE MECHANICAL


TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline

Note: Drawing is not to scale.

TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data

Symbol		mm			inches			
	Тур	Min	Max	Тур	Min	Max		
А			1.20			0.0472		
A1		0.05	0.15		0.0020	0.0059		
A2		0.95	1.05		0.0374	0.0413		
В		0.17	0.27		0.0067	0.0106		
С		0.10	0.21		0.0039	0.0083		
D		19.80	20.20		0.7795	0.7953		
D1		18.30	18.50		0.7205	0.7283		
E		11.90	12.10		0.4685	0.4764		
е	0.50	-	-	0.0197	-	-		
L		0.50	0.70		0.0197	0.0279		
α		0°	5°		0°	5°		
Ν	48			48				
CP			0.10			0.0039		

TFBGA63 – 63 ball array, 0.8 mm pitch, Package Outline, Bottom view

Note: Drawing is not to scale.

TFBGA63 – 63 ball array, 0.8 mm pitch, Package Mechanical Data

Symbol		millimeters			inches			
Symbol	Тур	Min	Мах	Тур	Min	Max		
А			1.200			0.0472		
A1		0.250			0.0098			
A2			0.900			0.0354		
b		0.350	0.450		0.0138	0.0177		
D	7.000	6.900	7.100	0.2756	0.2717	0.2795		
D1	5.600	_	_	0.2205	-	_		
ddd	-	_	0.100	-	-	0.0039		
Е	11.000	10.900	11.100	0.4331	0.4291	0.4370		
E1	8.800	_	_	0.3465	-	-		
е	0.800	_	-	0.0315	_	-		
FD	0.700	-	-	0.0276	-	-		
FE	1.100	-	-	0.0433	-	-		
SD	0.400	-	-	0.0157	-	-		
SE	0.400	-	-	0.0157	-	-		

PART NUMBERING

Table 16. Ordering Information Scheme

Example:	M29W320DB	90 N 1	Т
Device Type			
M29			
Operating Voltage			
$W = V_{CC} = 2.7 \text{ to } 3.6 \text{V}$			
Device Function			
320D = 32 Mbit (x8/x16), Boot Block			
Array Matrix			
T = Top Boot			
B = Bottom Boot			
Speed			
70 = 70 ns			
90 = 90 ns			
Package			
N = TSOP48: 12 x 20 mm			
ZA = TFBGA63: 7x11mm, 0.80 mm pitch			
Temperature Range			
1 = 0 to 70 °C		,	
6 = -40 to 85 °C			
Option			

T = Tape & Reel Packing

Devices are shipped from the factory with the memory content bits erased to '1'.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

APPENDIX A. BLOCK ADDRESS TABLE

Table 17. Top Boot Block Addresses, M29W320DT

#	Size (KByte/ KWord)	Address Range (x8)	Address Range (x16)
66	16/8	3FC000h-3FFFFFh	1FE000h-1FFFFFh
65	8/4	3FA000h-3FBFFFh	1FD000h-1FDFFFh
64	8/4	3F8000h-3F9FFFh	1FC000h-1FCFFFh
63	32/16	3F0000h-3F7FFFh	1F8000h-1FBFFFh
62	64/32	3E0000h-3EFFFFh	1F0000h-1F7FFFh
61	64/32	3D0000h-3DFFFFh	1E8000h-1EFFFFh
60	64/32	3C0000h-3CFFFFh	1E0000h-1E7FFFh
59	64/32	3B0000h-3BFFFFh	1D8000h-1DFFFFh
58	64/32	3A0000h-3AFFFFh	1D0000h-1D7FFFh
57	64/32	390000h-39FFFFh	1C8000h-1CFFFFh
56	64/32	380000h-18FFFFh	1C0000h-1C7FFFh
55	64/32	370000h-37FFFFh	1B8000h-1BFFFFh
54	64/32	360000h-36FFFFh	1B0000h-1B7FFFh
53	64/32	350000h-35FFFFh	1A8000h-1AFFFFh
52	64/32	340000h-34FFFFh	1A0000h-1A7FFFh
51	64/32	330000h-33FFFFh	198000h-19FFFFh
50	64/32	320000h-32FFFFh	190000h-197FFFh
49	64/32	310000h-31FFFFh	188000h-18FFFFh
48	64/32	300000h-30FFFFh	180000h-187FFFh
47	64/32	2F0000h-2FFFFFh	178000h-17FFFFh
46	64/32	2E0000h-2EFFFFh	170000h-177FFFh
45	64/32	2D0000h-2DFFFFh	168000h-16FFFFh
44	64/32	2C0000h-2CFFFFh	160000h-167FFFh
43	64/32	2B0000h-2BFFFFh	158000h-15FFFFh
42	64/32	2A0000h-2AFFFFh	150000h-157FFFh
41	64/32	290000h-29FFFFh	148000h-14FFFFh
40	64/32	280000h-28FFFFh	140000h-147FFFh
39	64/32	270000h-27FFFFh	138000h-13FFFFh
38	64/32	260000h-26FFFFh	130000h-137FFFh
37	64/32	250000h-25FFFFh	128000h-12FFFFh
36	64/32	240000h-24FFFFh	120000h-127FFFh
35	64/32	230000h-23FFFFh	118000h-11FFFFh

3464/32220000h-22FFFH110000h-117FFFH3364/32210000h-21FFFH10800h-10FFFH3464/321F0000h-1FFFFH0F800h-0FFFFH3064/321E0000h-1EFFFH0F800h-0FFFFH3064/321D000h-1DFFFH0E8000h-0EFFFH2964/32120000h-1DFFFH0E8000h-0EFFFH2864/3212000h-1AFFFH0D000h-0DFFFFH2964/3218000h-13FFFH0D000h-0DFFFFH2664/3218000h-13FFFH0D000h-0DFFFFH2664/3218000h-13FFFH0C000h-0CFFFFH2764/3218000h-13FFFH0B800h-0BFFFH2864/3217000h-17FFFH0B800h-0BFFFH2964/3216000h-14FFFH0B000h-0BFFFH2064/3215000h-13FFFH0A800h-0AFFFFH2164/3212000h-13FFFH0A800h-0AFFFFH2264/3213000h-13FFFH0A800h-0AFFFFH2064/3212000h-14FFFH09000h-03FFFH1964/3212000h-14FFFH08000h-03FFFH1064/3210000h-0FFFFH07000h-07FFFH1164/320E000h-0FFFFH07000h-07FFFH1264/320D000h-0FFFFH06000h-06FFFH1364/320D000h-0FFFFH05000h-05FFFH1464/320D000h-0FFFFH05000h-05FFFH1564/3200000h-0FFFFH03000h-03FFFFH1664/3200000h-0FFFFH03000h-03FFFFH1764/3200000h-0FFFFH03000h-03FFFFH<			-	
32 64/32 20000h-20FFFh 10000h-107FFFh 31 64/32 1F0000h-1FFFFh 0F8000h-0FBFFh 30 64/32 1E0000h-1EFFFh 0F8000h-0FFFFh 29 64/32 1D000h-1DFFFh 0E8000h-0EFFFh 28 64/32 1C000h-1CFFFh 0E8000h-0EFFFh 28 64/32 1B000h-1BFFFh 0E800h-0EFFFh 26 64/32 18000h-1FFFFh 0D000h-0D7FFFh 26 64/32 18000h-1FFFFh 0C800h-0EFFFh 26 64/32 18000h-1FFFFh 0D000h-0D7FFFh 24 64/32 18000h-1FFFFh 0C800h-0EFFFh 24 64/32 16000h-1FFFFh 0B800h-0BFFFh 25 64/32 16000h-14FFFFh 0B800h-0AFFFFh 26 64/32 13000h-13FFFh 0A000h-037FFFh 27 64/32 14000h-14FFFFh 0A000h-03FFFFh 28 64/32 10000h-17FFFFh 08000h-08FFFFh 29 64/32 10000h-16FFFFh 08000h-08FFFFh 16 6	34	64/32	220000h-22FFFFh	110000h-117FFFh
31 64/32 1F0000h-1FFFFh 0F8000h-0FBFFh 30 64/32 1E0000h-1EFFFh 0F0000h-0E7FFh 29 64/32 1D0000h-1DFFFh 0E8000h-0E7FFFh 28 64/32 1C0000h-1EFFFh 0E8000h-0E7FFFh 27 64/32 1B0000h-1BFFFh 0D000h-0D7FFFh 26 64/32 1A0000h-1AFFFFh 0D000h-0D7FFFh 25 64/32 180000h-18FFFh 0C000h-0C7FFFh 24 64/32 180000h-18FFFh 0C000h-0C7FFFh 23 64/32 180000h-18FFFh 0C000h-0E7FFh 24 64/32 180000h-18FFFh 0C000h-0C7FFFh 23 64/32 160000h-18FFFh 0B8000h-0BFFFh 24 64/32 160000h-18FFFh 0B000h-0BFFFh 25 64/32 120000h-13FFFh 0A000h-0A7FFFh 26 64/32 130000h-13FFFh 0A000h-0A7FFFh 21 64/32 120000h-12FFFh 0A000h-0A7FFFh 26 64/32 10000h-11FFFFh 08000h-03FFFh 15	33	64/32	210000h-21FFFFh	108000h-10FFFFh
30 64/32 1E0000h-1EFFFh 0F0000h-0F7FFFh 29 64/32 1D0000h-1DFFFh 0E8000h-0E7FFFh 28 64/32 1C0000h-1CFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFh 0D000h-0D7FFFh 26 64/32 1A0000h-1AFFFFh 0D000h-0D7FFFh 25 64/32 190000h-19FFFFh 0C8000h-0C7FFFh 24 64/32 180000h-18FFFFh 0C8000h-0E7FFFh 23 64/32 180000h-18FFFFh 0C8000h-0E7FFFh 24 64/32 180000h-18FFFFh 0C8000h-0E7FFFh 27 64/32 160000h-16FFFFh 0B8000h-0BFFFFh 28 64/32 160000h-16FFFFh 0B0000h-0A7FFFh 29 64/32 130000h-13FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 090000h-03FFFh 19 64/32 120000h-12FFFFh 090000h-03FFFFh 19 64/32 10000h-11FFFFh 08000h-03FFFFh 16 64/32 0E0000h-0EFFFFh 070000h-07FFFFh <	32	64/32	200000h-20FFFFh	100000h-107FFFh
29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1CFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFh 0D0000h-0D7FFFh 26 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh 25 64/32 190000h-19FFFFh 0C8000h-0C7FFFh 24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 24 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 27 64/32 150000h-15FFFh 0A8000h-0B7FFFh 28 64/32 150000h-15FFFh 0A9000h-0A7FFFh 29 64/32 130000h-13FFFFh 0A9000h-097FFFh 20 64/32 120000h-12FFFh 098000h-087FFFh 30 64/32 120000h-12FFFh 098000h-087FFFh 31 64/32 100000h-01FFFFh 08000h-087FFFh 31 64/32 0F0000h-02FFFFh 070000h-07FFFFh 31 64/32 0C0000h-02FFFFh 060000h-067FFFh	31	64/32	1F0000h-1FFFFFh	0F8000h-0FBFFFh
28 64/32 1C0000h-1CFFFh 0E000h-0E7FFh 27 64/32 1B000h-1BFFFh 0D800h-0DFFFh 26 64/32 1A000h-1AFFFh 0D000h-0D7FFFh 25 64/32 19000h-19FFFh 0C800h-0CFFFFh 24 64/32 18000h-18FFFh 0C000h-0C7FFFh 23 64/32 17000h-17FFFH 0B800h-0BFFFh 23 64/32 16000h-16FFFh 0B800h-0BFFFh 24 64/32 16000h-16FFFh 0B800h-0BFFFh 20 64/32 16000h-14FFFh 0A800h-0AFFFh 21 64/32 12000h-13FFFh 0A000h-0A7FFFh 20 64/32 12000h-14FFFh 0A800h-03FFFh 19 64/32 12000h-12FFFh 09000h-037FFh 18 64/32 10000h-11FFFh 08800h-03FFFh 19 64/32 0F000h-0FFFFh 07800h-07FFFh 14 64/32 0F000h-0FFFFh 07800h-0FFFFh 15 64/32 0E000h-0FFFFh 06800h-06FFFFh 14 64/32	30	64/32	1E0000h-1EFFFFh	0F0000h-0F7FFFh
27 64/32 1B0000h-1BFFFh 0D8000h-0DFFFh 26 64/32 1A0000h-1AFFFFh 0D000h-0D7FFFh 25 64/32 190000h-19FFFh 0C8000h-0C7FFFh 24 64/32 180000h-18FFFh 0C8000h-0C7FFFh 23 64/32 170000h-17FFFh 0B8000h-0BFFFh 24 64/32 160000h-16FFFh 0B000h-0B7FFFh 27 64/32 160000h-16FFFh 0B000h-0B7FFFh 28 64/32 160000h-16FFFh 0B000h-0B7FFFh 29 64/32 160000h-13FFFFh 0A8000h-0A7FFFh 20 64/32 130000h-13FFFFh 098000h-097FFFh 19 64/32 120000h-12FFFh 098000h-087FFFh 18 64/32 10000h-10FFFFh 088000h-087FFFh 17 64/32 0F0000h-0FFFFh 078000h-077FFFh 18 64/32 0E0000h-0FFFFh 078000h-067FFFh 14 64/32 0E0000h-0FFFFh 068000h-067FFFh 13 64/32 0E0000h-0FFFFh 058000h-057FFFh	29	64/32	1D0000h-1DFFFFh	0E8000h-0EFFFFh
26 64/32 1A0000h-1AFFFFh 0D000h-0D7FFFh 25 64/32 19000h-19FFFh 0C800h-0CFFFFh 24 64/32 180000h-18FFFh 0C8000h-0C7FFFh 23 64/32 170000h-17FFFh 0B8000h-0BFFFh 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFh 0A8000h-0AFFFFh 20 64/32 130000h-13FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 19 64/32 120000h-12FFFFh 09000h-097FFFh 18 64/32 120000h-12FFFFh 098000h-087FFFh 16 64/32 10000h-11FFFFh 088000h-087FFFh 16 64/32 0F0000h-0FFFFh 078000h-07FFFFh 16 64/32 0F0000h-0FFFFh 078000h-067FFFh 13 64/32 0E0000h-0FFFFh 06000h-067FFFh 14 64/32 0C0000h-0AFFFFh 058000h-057FFFh 13 64/32 0A0000h-0AFFFFh 058000h-03FFFFh	28	64/32	1C0000h-1CFFFFh	0E0000h-0E7FFFh
25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-13FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-03FFFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 19 64/32 120000h-12FFFFh 090000h-09FFFFh 18 64/32 120000h-11FFFFh 088000h-08FFFFh 16 64/32 10000h-10FFFFh 088000h-08FFFFh 16 64/32 0F0000h-0EFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 14 64/32 0D000h-0AFFFFh 058000h-05FFFh 13 64/32 0A0000h-0AFFFFh 058000h-03FFFFh 14 64/32 0A0000h-03FFFFh 038000h-03FFFFh	27	64/32	1B0000h-1BFFFFh	0D8000h-0DFFFFh
24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 19 64/32 120000h-12FFFh 090000h-09FFFFh 18 64/32 120000h-11FFFFh 088000h-08FFFFh 16 64/32 10000h-10FFFFh 088000h-08FFFFh 16 64/32 0F0000h-0EFFFFh 078000h-07FFFFh 16 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0D0000h-0DFFFFh 058000h-06FFFFh 14 64/32 0B0000h-08FFFFh 058000h-03FFFFh 15 64/32 0A0000h-08FFFFh 058000h-03FFFFh 16 64/32 090000h-08FFFFh 038000h-03FFFFh <td>26</td> <td>64/32</td> <td>1A0000h-1AFFFFh</td> <td>0D0000h-0D7FFFh</td>	26	64/32	1A0000h-1AFFFFh	0D0000h-0D7FFFh
23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-097FFFh 18 64/32 120000h-12FFFFh 090000h-097FFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 10000h-01FFFFh 088000h-08FFFFh 15 64/32 0F0000h-0EFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 14 64/32 0D0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0D0000h-0AFFFFh 058000h-05FFFFh 14 64/32 0A0000h-0AFFFFh 058000h-03FFFFh 15 64/32 03000h-03FFFFh 040000h-04FFFFh 16 64/32 060000h-03FFFFh 038000h-03FFFFh <td>25</td> <td>64/32</td> <td>190000h-19FFFFh</td> <td>0C8000h-0CFFFFh</td>	25	64/32	190000h-19FFFFh	0C8000h-0CFFFFh
22 64/32 160000h-16FFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFh 090000h-09FFFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 10000h-0FFFFh 078000h-08FFFFh 15 64/32 0F0000h-0EFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 15 64/32 0C0000h-02FFFFh 068000h-06FFFFh 16 64/32 0B0000h-03FFFFh 058000h-03FFFFh 10 64/32 0A0000h-03FFFFh 038000h-03FFFFh 11 64/32 03000h-03FFFFh 038000h-03FFFFh 12 64/32 050000h-03FFFFh 030000h-03FFFFh	24	64/32	180000h-18FFFFh	0C0000h-0C7FFFh
21 64/32 150000h-15FFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFh 098000h-09FFFFh 18 64/32 120000h-12FFFh 090000h-097FFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-01FFFFh 08000h-087FFFh 15 64/32 0F0000h-0EFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0C0000h-02FFFFh 060000h-06FFFFh 14 64/32 0B0000h-03FFFFh 058000h-05FFFFh 15 64/32 0A0000h-03FFFFh 050000h-03FFFFh 16 64/32 080000h-03FFFFh 038000h-03FFFFh 17 64/32 070000h-07FFFFh 038000h-03FFFFh 16 64/32 060000h-03FFFFh 038000h-03FFFFh	23	64/32	170000h-17FFFFh	0B8000h-0BFFFFh
20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFh 098000h-09FFFFh 18 64/32 120000h-12FFFh 090000h-097FFFh 17 64/32 110000h-11FFFh 088000h-08FFFFh 16 64/32 10000h-10FFFFh 088000h-08FFFFh 16 64/32 0F0000h-0FFFFh 078000h-07FFFFh 15 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 14 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 058000h-04FFFFh 11 64/32 080000h-03FFFFh 048000h-04FFFFh 10 64/32 070000h-07FFFFh 038000h-03FFFFh 14 64/32 050000h-05FFFFh 028000h-02FFFFh	22	64/32	160000h-16FFFFh	0B0000h-0B7FFFh
19 64/32 130000h-13FFFh 098000h-09FFFFh 18 64/32 120000h-12FFFh 090000h-097FFFh 17 64/32 110000h-11FFFh 088000h-08FFFh 16 64/32 100000h-0FFFFh 078000h-07FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFh 13 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 14 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 13 64/32 0C0000h-0CFFFFh 068000h-06FFFFh 14 64/32 0C0000h-0AFFFFh 058000h-05FFFFh 15 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 16 64/32 080000h-03FFFFh 040000h-04FFFFh 10 64/32 070000h-07FFFFh 038000h-03FFFFh 14 64/32 060000h-06FFFFh 030000h-03FFFFh 15 64/32 060000h-06FFFFh 038000h-03FFFFh 16 64/32 040000h-04FFFFh 028000h-02FFFFh <	21	64/32	150000h-15FFFFh	0A8000h-0AFFFFh
18 64/32 120000h-12FFFh 090000h-097FFFh 17 64/32 110000h-11FFFh 088000h-08FFFFh 16 64/32 100000h-10FFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0E0000h-0EFFFFh 068000h-06FFFFh 14 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 13 64/32 0C0000h-0CFFFFh 068000h-06FFFFh 14 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 10 64/32 090000h-09FFFFh 048000h-04FFFFh 10 64/32 080000h-03FFFFh 040000h-03FFFFh 11 64/32 050000h-05FFFFh 038000h-03FFFFh 11 64/32 050000h-05FFFFh 028000h-02FFFFh 12 64/32 030000h-03FFFFh 028000h-02FFFFh	20	64/32	140000h-14FFFFh	0A0000h-0A7FFFh
17 64/32 110000h-11FFFh 088000h-08FFFFh 16 64/32 10000h-10FFFh 08000h-087FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFh 14 64/32 0E0000h-0EFFFh 070000h-07FFFh 13 64/32 0E0000h-0EFFFh 068000h-06FFFh 14 64/32 0E0000h-0EFFFh 068000h-06FFFFh 13 64/32 0C0000h-0EFFFh 068000h-06FFFFh 14 64/32 0C0000h-0EFFFh 060000h-06FFFFh 15 64/32 0C0000h-0EFFFh 058000h-05FFFh 14 64/32 0B0000h-08FFFFh 058000h-05FFFFh 15 64/32 0A0000h-03FFFFh 048000h-04FFFFh 16 64/32 070000h-07FFFFh 038000h-03FFFFh 17 64/32 060000h-06FFFFh 038000h-03FFFFh 16 64/32 050000h-05FFFFh 028000h-02FFFFh 17 64/32 040000h-04FFFFh 028000h-02FFFFh 16 64/32 030000h-03FFFFh 028000h-01FFFFh	19	64/32	130000h-13FFFFh	098000h-09FFFFh
16 64/32 100000h-10FFFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-07FFFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 14 64/32 0C0000h-0CFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0DFFFFh 068000h-06FFFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 10 64/32 0A0000h-03FFFFh 048000h-04FFFFh 10 64/32 03000h-03FFFFh 040000h-04FFFFh 11 64/32 060000h-06FFFFh 038000h-03FFFFh 15 64/32 050000h-05FFFFh 038000h-03FFFFh 16 64/32 050000h-03FFFFh 028000h-02FFFFh 17 64/32 040000h-04FFFFh 028000h-02FFFFh 16 64/32 030000h-03FFFFh 018000h-01FFFFh <td>18</td> <td>64/32</td> <td>120000h-12FFFFh</td> <td>090000h-097FFFh</td>	18	64/32	120000h-12FFFFh	090000h-097FFFh
15 64/32 0F0000h-0FFFFh 078000h-07FFFh 14 64/32 0E0000h-0EFFFh 070000h-077FFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 11 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-03FFFFh 9 64/32 090000h-03FFFFh 048000h-04FFFFh 9 64/32 080000h-08FFFFh 040000h-047FFFh 9 64/32 070000h-07FFFFh 038000h-03FFFFh 64/32 060000h-06FFFFh 038000h-03FFFFh 64/32 060000h-06FFFFh 030000h-03FFFFh 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 3 64/32 020000h-02FFFFh 018000h-01FFFFh 3 64/32 02	17	64/32	110000h-11FFFFh	088000h-08FFFFh
14 64/32 0E0000h-0EFFFh 070000h-077FFFh 13 64/32 0D0000h-0DFFFh 068000h-06FFFFh 12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFh 058000h-05FFFFh 11 64/32 0A0000h-0AFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 9 64/32 080000h-03FFFFh 040000h-04FFFFh 8 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 038000h-03FFFFh 6 64/32 050000h-05FFFFh 028000h-02FFFFh 5 64/32 050000h-03FFFFh 028000h-02FFFFh 4 64/32 030000h-03FFFFh 018000h-01FFFFh 3 64/32 020000h-02FFFFh 018000h-01FFFFh 4 64/32 020000h-02FFFFh 018000h-01FFFFh 3 64/32 020000h-02FFFFh 018000h-01FFFFh	16	64/32	100000h-10FFFFh	080000h-087FFFh
13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFFh 058000h-057FFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 9 64/32 080000h-08FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-04FFFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 038000h-03FFFFh 6 64/32 050000h-05FFFFh 028000h-02FFFFh 5 64/32 050000h-03FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 028000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 018000h-01FFFFh 3 64/32 010000h-01FFFFh 008000h-00FFFFh	15	64/32	0F0000h-0FFFFFh	078000h-07FFFFh
12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-04FFFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 030000h-03FFFFh 6 64/32 050000h-05FFFFh 028000h-02FFFFh 5 64/32 050000h-03FFFFh 028000h-02FFFFh 4 64/32 030000h-03FFFFh 018000h-01FFFFh 3 64/32 020000h-02FFFFh 018000h-01FFFFh 4 64/32 020000h-02FFFFh 018000h-01FFFFh 3 64/32 010000h-01FFFFh 008000h-00FFFFh	14	64/32	0E0000h-0EFFFFh	070000h-077FFFh
11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh 9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-047FFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 038000h-03FFFFh 6 64/32 050000h-05FFFFh 038000h-03FFFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 018000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	13	64/32	0D0000h-0DFFFFh	068000h-06FFFFh
10 64/32 0A0000h-0AFFFh 050000h-057FFFh 9 64/32 090000h-09FFFh 048000h-04FFFFh 8 64/32 080000h-08FFFh 040000h-04FFFFh 7 64/32 070000h-07FFFh 038000h-03FFFFh 6 64/32 060000h-06FFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 030000h-037FFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	12	64/32	0C0000h-0CFFFFh	060000h-067FFFh
9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-047FFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 030000h-037FFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	11	64/32	0B0000h-0BFFFFh	058000h-05FFFFh
8 64/32 080000h-08FFFFh 040000h-047FFFh 7 64/32 070000h-07FFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 030000h-037FFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 028000h-02FFFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 018000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh <td>10</td> <td>64/32</td> <td>0A0000h-0AFFFFh</td> <td>050000h-057FFFh</td>	10	64/32	0A0000h-0AFFFFh	050000h-057FFFh
7 64/32 070000h-07FFFh 038000h-03FFFh 6 64/32 060000h-06FFFh 030000h-037FFFh 5 64/32 050000h-05FFFh 028000h-02FFFh 4 64/32 040000h-04FFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	9	64/32	090000h-09FFFFh	048000h-04FFFFh
6 64/32 060000h-06FFFFh 030000h-037FFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	8	64/32	080000h-08FFFFh	040000h-047FFFh
5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-01FFFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	7	64/32	070000h-07FFFFh	038000h-03FFFFh
4 64/32 040000h-04FFFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	6	64/32	060000h-06FFFFh	030000h-037FFFh
3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	5	64/32	050000h-05FFFFh	028000h-02FFFFh
2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh	4	64/32	040000h-04FFFFh	020000h-027FFFh
1 64/32 010000h-01FFFFh 008000h-00FFFFh	3	64/32	030000h-03FFFFh	018000h-01FFFFh
	2	64/32	020000h-02FFFFh	010000h-017FFFh
0 64/32 000000h-00FFFh 000000h-007FFFh	1	64/32	010000h-01FFFFh	008000h-00FFFFh
	0	64/32	000000h-00FFFFh	000000h-007FFFh

Table 18. Bottom Boot Block Addresses, M29W320DB

#	Size (KByte/ KWord)	Address Range (x8)	Address Range (x16)
66	64/32	3F0000h-3FFFFFh	1F8000h-1FFFFFh
65	64/32	3E0000h-3EFFFFh	1F0000h-1F7FFFh
64	64/32	3D0000h-3DFFFFh	1E8000h-1EFFFFh
63	64/32	3C0000h-3CFFFFh	1E0000h-1E7FFFh
62	64/32	3B0000h-3BFFFFh	1D8000h-1DFFFFh
61	64/32	3A0000h-3AFFFFh	1D0000h-1D7FFFh
60	64/32	390000h-39FFFFh	1C8000h-1CFFFFh
59	64/32	380000h-18FFFFh	1C0000h-1C7FFFh
58	64/32	370000h-37FFFFh	1B8000h-1BFFFFh
57	64/32	360000h-36FFFFh	1B0000h-1B7FFFh
56	64/32	350000h-35FFFFh	1A8000h-1AFFFFh
55	64/32	340000h-34FFFFh	1A0000h-1A7FFFh
54	64/32	330000h-33FFFFh	198000h-19FFFFh
53	64/32	320000h-32FFFFh	190000h-197FFFh
52	64/32	310000h-31FFFFh	188000h-18FFFFh
51	64/32	300000h-30FFFFh	180000h-187FFFh
50	64/32	2F0000h-2FFFFFh	178000h-17FFFFh
49	64/32	2E0000h-2EFFFFh	170000h-177FFFh
48	64/32	2D0000h-2DFFFFh	168000h-16FFFFh
47	64/32	2C0000h-2CFFFFh	160000h-167FFFh
46	64/32	2B0000h-2BFFFFh	158000h-15FFFFh
45	64/32	2A0000h-2AFFFFh	150000h-157FFFh
44	64/32	290000h-29FFFFh	148000h-14FFFFh
43	64/32	280000h-28FFFFh	140000h-147FFFh
42	64/32	270000h-27FFFFh	138000h-13FFFFh
41	64/32	260000h-26FFFFh	130000h-137FFFh
40	64/32	250000h-25FFFFh	128000h-12FFFFh
39	64/32	240000h-24FFFFh	120000h-127FFFh
38	64/32	230000h-23FFFFh	118000h-11FFFFh
37	64/32	220000h-22FFFFh	110000h-117FFFh
36	64/32	210000h-21FFFFh	108000h-10FFFFh
35	64/32	200000h-20FFFFh	100000h-107FFFh

34	64/32	1F0000h-1FFFFFh	0F8000h-0FBFFFh
33	64/32	1E0000h-1EFFFFh	0F0000h-0F7FFFh
32	64/32	1D0000h-1DFFFFh	0E8000h-0EFFFFh
31	64/32	1C0000h-1CFFFFh	0E0000h-0E7FFFh
30	64/32	1B0000h-1BFFFFh	0D8000h-0DFFFFh
29	64/32	1A0000h-1AFFFFh	0D0000h-0D7FFFh
28	64/32	190000h-19FFFFh	0C8000h-0CFFFFh
27	64/32	180000h-18FFFFh	0C0000h-0C7FFFh
26	64/32	170000h-17FFFFh	0B8000h-0BFFFFh
25	64/32	160000h-16FFFFh	0B0000h-0B7FFFh
24	64/32	150000h-15FFFFh	0A8000h-0AFFFFh
23	64/32	140000h-14FFFFh	0A0000h-0A7FFFh
22	64/32	130000h-13FFFFh	098000h-09FFFFh
21	64/32	120000h-12FFFFh	090000h-097FFFh
20	64/32	110000h-11FFFFh	088000h-08FFFFh
19	64/32	100000h-10FFFFh	080000h-087FFFh
18	64/32	0F0000h-0FFFFFh	078000h-07FFFFh
17	64/32	0E0000h-0EFFFFh	070000h-077FFFh
16	64/32	0D0000h-0DFFFFh	068000h-06FFFFh
15	64/32	0C0000h-0CFFFFh	060000h-067FFFh
14	64/32	0B0000h-0BFFFFh	058000h-05FFFFh
13	64/32	0A0000h-0AFFFFh	050000h-057FFFh
12	64/32	090000h-09FFFFh	048000h-04FFFFh
11	64/32	080000h-08FFFFh	040000h-047FFFh
10	64/32	070000h-07FFFFh	038000h-03FFFFh
9	64/32	060000h-06FFFFh	030000h-037FFFh
8	64/32	050000h-05FFFFh	028000h-02FFFFh
7	64/32	040000h-04FFFFh	020000h-027FFFh
6	64/32	030000h-03FFFFh	018000h-01FFFFh
5	64/32	020000h-02FFFFh	010000h-017FFFh
4	64/32	010000h-01FFFFh	008000h-00FFFFh
3	32/16	008000h-00FFFFh	004000h-007FFFh
2	8/4	006000h-007FFFh	003000h-003FFFh
1	8/4	004000h-005FFFh	002000h-002FFFh
0	16/8	000000h-003FFFh	000000h-001FFFh

APPENDIX B. COMMON FLASH INTERFACE (CFI)

The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary.

When the CFI Query Command is issued the device enters CFI Query mode and the data structure

is read from the memory. Tables 19, 20, 21, 22, 23 and 24 show the addresses used to retrieve the data.

The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table 24, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by ST. Issue a Read command to return to Read mode.

Add	ress	Sub-section Name	Description		
x16	x8		Description		
10h	20h	CFI Query Identification String	Command set ID and algorithm data offset		
1Bh	36h	System Interface Information	Device timing & voltage information		
27h	4Eh	Device Geometry Definition	Flash device layout		
40h	80h	Primary Algorithm-specific Extended Query table	Additional information specific to the Primary Algorithm (optional)		
61h	C2h	Security Code Area	64 bit unique device number		

Table 19. Query Structure Overview

Note: Query data are always presented on the lowest order data outputs.

Table 20. CFI Query Identification String

Add	Address		Description	
x16	x8	Data	Description	Value
10h	20h	0051h		"Q"
11h	22h	0052h	Query Unique ASCII String "QRY"	"R"
12h	24h	0059h		"Y"
13h	26h	0002h	Primary Algorithm Command Set and Control Interface ID code 16 bit	AMD
14h	28h	0000h	ID code defining a specific algorithm	Compatible
15h	2Ah	0040h	Address for Drimory Algorithm system dod Query table (see Table 22)	P = 40h
16h	2Ch	0000h	Address for Primary Algorithm extended Query table (see Table 22)	P = 4011
17h	2Eh	0000h	Alternate Vendor Command Set and Control Interface ID Code second	NIA
18h	30h	0000h	vendor - specified algorithm supported	NA
19h	32h	0000h	Address for Alternate Algorithm extended Query table	NA
1Ah	34h	0000h		NA

Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are '0'.

Add	Iress	Data	Description	Mahua
x16	x8	Dala	Description	Value
1Bh	36h	0027h	V _{CC} Logic Supply Minimum Program/Erase voltagebit 7 to 4BCD value in voltsbit 3 to 0BCD value in 100 mV	2.7V
1Ch	38h	0036h	V _{CC} Logic Supply Maximum Program/Erase voltagebit 7 to 4BCD value in voltsbit 3 to 0BCD value in 100 mV	3.6V
1Dh	3Ah	00B5h	V _{PP} [Programming] Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	11.5V
1Eh	3Ch	00C5h	VPP [Programming] Supply Maximum Program/Erase voltagebit 7 to 4HEX value in voltsbit 3 to 0BCD value in 100 mV	12.5V
1Fh	3Eh	0004h	Typical timeout per single byte/word program = $2^{n} \mu s$	16µs
20h	40h	0000h	Typical timeout for minimum size write buffer program = $2^{n} \mu s$	NA
21h	42h	000Ah	Typical timeout per individual block erase = 2 ⁿ ms	1s
22h	44h	0000h	Typical timeout for full chip erase = 2 ⁿ ms	NA
23h	46h	0005h	Maximum timeout for byte/word program = 2 ⁿ times typical	512µs
24h	48h	0000h	Maximum timeout for write buffer program = 2 ⁿ times typical	NA
25h	4Ah	0004h	Maximum timeout per individual block erase = 2 ⁿ times typical	16s
26h	4Ch	0000h	Maximum timeout for chip erase = 2^n times typical	NA

Table 21. CFI Query System Interface Information

Add	Iress	Data	Description	
x16	x8	Data	Description	Value
27h	4Eh	0016h	Device Size = 2 ⁿ in number of bytes	4 MByte
28h	50h	0002h	Flash Device Interface Code description	x8, x16
29h	52h	0000h		Async.
2Ah 2Bh	54h 56h	0000h 0000h	Maximum number of bytes in multi-byte program or page = 2^{n}	NA
2Ch	58h	0004h	Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size.	4
2Dh	5Ah	0000h	Region 1 Information	1
2Eh	5Ch	0000h	Number of identical size erase block = 0000h+1	
2Fh	5Eh	0040h	Region 1 Information	16 Kbyte
30h	60h	0000h	Block size in Region 1 = 0040h * 256 byte	
31h	62h	0001h	Region 2 Information	2
32h	64h	0000h	Number of identical size erase block = 0001h+1	
33h	66h	0020h	Region 2 Information	8 Kbyte
34h	68h	0000h	Block size in Region 2 = 0020h * 256 byte	
35h	6Ah	0000h	Region 3 Information	1
36h	6Ch	0000h	Number of identical size erase block = 0000h+1	
37h	6Eh	0080h	Region 3 Information	32 Kbyte
38h	70h	0000h	Block size in Region 3 = 0080h * 256 byte	
39h	72h	003Eh	Region 4 Information	63
3Ah	74h	0000h	Number of identical-size erase block = 003Eh+1	
3Bh	76h	0000h	Region 4 Information	64 Kbyte
3Ch	78h	0001h	Block size in Region 4 = 0100h * 256 byte	

 Table 22. Device Geometry Definition

57

35/43

Address		Data			
x16	x8	– Data	Description		
40h	80h	0050h		"P"	
41h	82h	0052h	Primary Algorithm extended Query table unique ASCII string "PRI"	"R"	
42h	84h	0049h		" "	
43h	86h	0031h	Major version number, ASCII	"1"	
44h	88h	0030h	Minor version number, ASCII	"0"	
45h	8Ah	0000h	Address Sensitive Unlock (bits 1 to 0) 00 = required, 01= not required Silicon Revision Number (bits 7 to 2)	Yes	
46h	8Ch	0002h	se Suspend = not supported, 01 = Read only, 02 = Read and Write		
47h	8Eh	0001h	lock Protection 0 = not supported, x = number of sectors in per group		
48h	90h	0001h	Temporary Block Unprotect 00 = not supported, 01 = supported	Yes	
49h	92h	0004h	Block Protect /Unprotect 04 = M29W400B	4	
4Ah	94h	0000h	Simultaneous Operations, 00 = not supported	No	
4Bh	96h	0000h	Burst Mode, 00 = not supported, 01 = supported	No	
4Ch	98h	0000h	Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word	No	
4Dh	9Ah	00B5h	V _{PP} Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	11.5\	
4Eh	9Ch	00C5h	V _{PP} Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	12.5\	
4Fh	9Eh	000xh	Top/Bottom Boot Block Flag 02h = Bottom Boot device, 03h = Top Boot device	_	

Table 23. Primary Algorithm-Specific Extended Query Table

Table 24. Security Code Area

Address		Dete	Description			
x16	x8	Data	Description			
61h	C3h, C2h	XXXX				
62h	C5h, C4h	XXXX	64 hitu unique device number			
63h	C7h, C6h	XXXX	64 bit: unique device number			
64h	C9h, C8h	XXXX				

APPENDIX C. BLOCK PROTECTION

Block protection can be used to prevent any operation from modifying the data stored in the Flash. Each Block can be protected individually. Once protected, Program and Erase operations on the block fail to change the data.

There are three techniques that can be used to control Block Protection, these are the Programmer technique, the In-System technique and Temporary Unprotection. Temporary Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is described in the Signal Descriptions section.

Unlike the Command Interface of the Program/ Erase Controller, the techniques for protecting and unprotecting blocks change between different Flash memory suppliers. For example, the techniques for AMD parts will not work on STMicroelectronics parts. Care should be taken when changing drivers for one part to work on another.

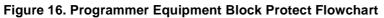
Programmer Technique

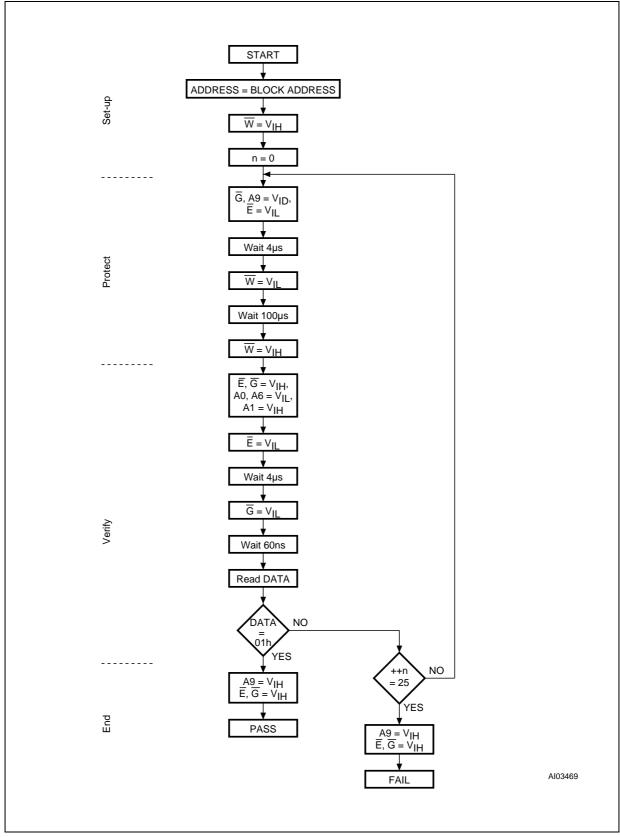
The Programmer technique uses high (V_{ID}) voltage levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended only for use in Programming Equipment.

To protect a block follow the flowchart in Figure 16, Programmer Equipment Block Protect Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then all blocks can be unprotected at the same time. To unprotect the chip follow Figure 17, Programmer Equipment Chip Unprotect Flowchart. Table 25, Programmer Technique Bus Operations, gives a summary of each operation.

The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

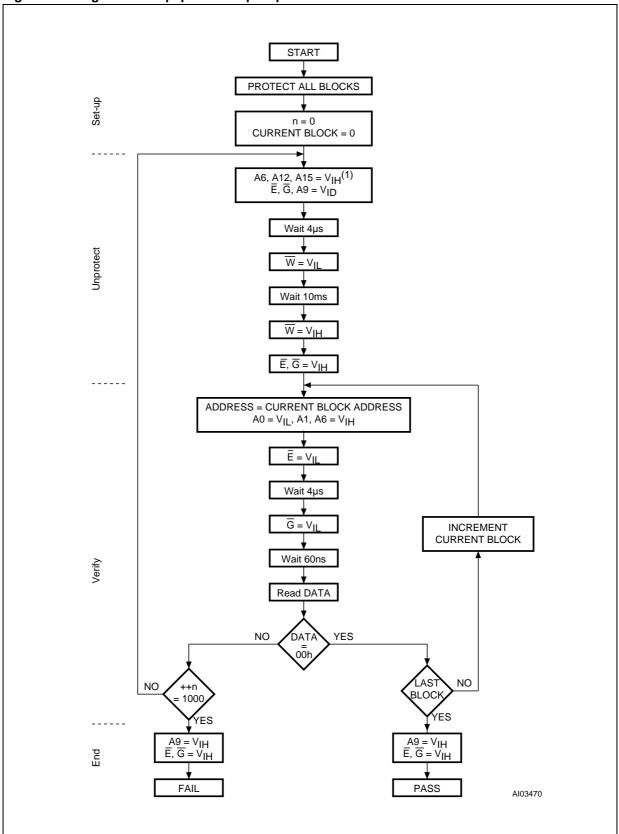
In-System Technique


The In-System technique requires a high voltage level on the Reset/Blocks Temporary Unprotect pin, \overline{RP} . This can be achieved without violating the maximum ratings of the components on the micro-processor bus, therefore this technique is suitable for use after the Flash has been fitted to the system.


To protect a block follow the flowchart in Figure 18, In-System Block Protect Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then all the blocks can be unprotected at the same time. To unprotect the chip follow Figure 19, In-System Chip Unprotect Flowchart.

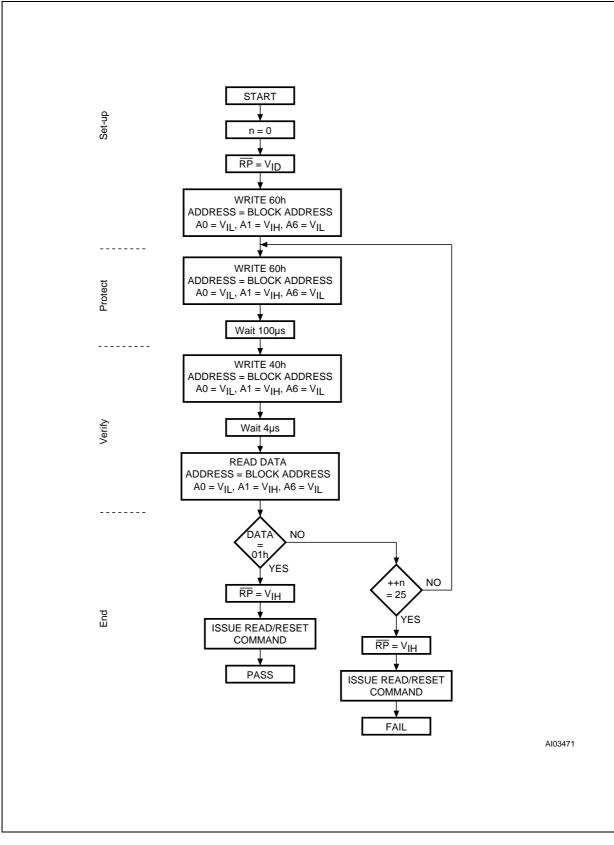
The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not allow the microprocessor to service interrupts that will upset the timing and do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

Operation	Ē	G	W	Address Inputs A0-A20	Data Inputs/Outputs DQ15A–1, DQ14-DQ0
Block Protect	V _{IL}	V _{ID}	V _{IL} Pulse	A9 = V _{ID} , A12-A20 Block Address Others = X	х
Chip Unprotect	VID	V _{ID}	VIL Pulse	$A9 = V_{ID}, A12 = V_{IH}, A15 = V_{IH}$ Others = X	х
Block Protection Verify	VIL	VIL	VIH	$\begin{array}{l} A0 = V_{IL}, A1 = V_{IH}, A6 = V_{IL}, A9 = V_{ID}, \\ A12\text{-}A20 \; Block \; Address \\ Others = X \end{array}$	Pass = XX01h Retry = XX00h
Block Unprotection Verify	VIL	VIL	VIH	$\begin{array}{l} \text{A0} = \text{V}_{\text{IL}}, \text{A1} = \text{V}_{\text{IH}}, \text{A6} = \text{V}_{\text{IH}}, \text{A9} = \text{V}_{\text{ID}}, \\ \text{A12-A20 Block Address} \\ \text{Others} = \text{X} \end{array}$	Retry = XX01h Pass = XX00h


Table 25	Programmer	Technique	Bus O	nerations	$\mathbf{BYTF} = \mathbf{Y}$	Vill or Vil
	i i ogi anninei	rechnique	Dus O	perations	, , , , , , , , , , , , , , , , , , , ,	

57

38/43



57

39/43

40/43

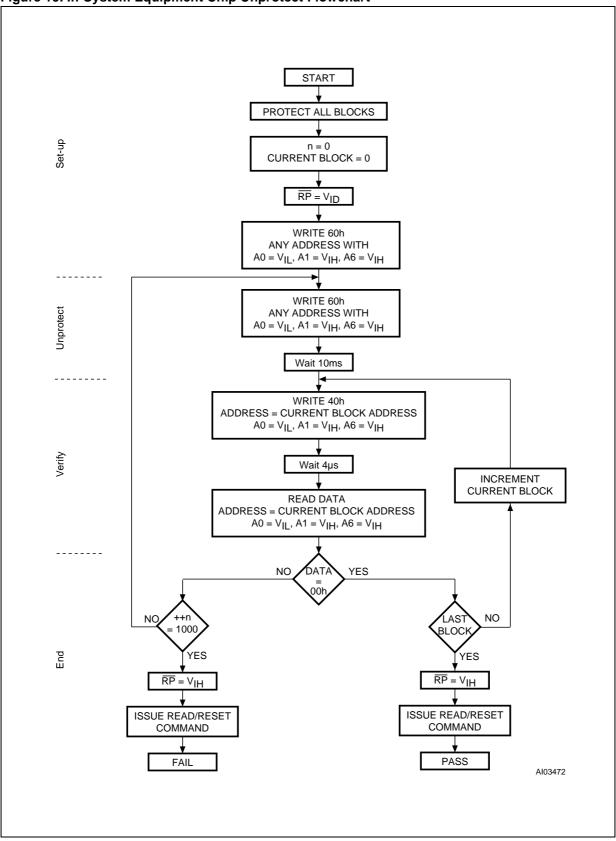


Figure 19. In-System Equipment Chip Unprotect Flowchart

57

41/43

REVISION HISTORY

Table 26. Document Revision History

Date	Version	Revision Details
March-2001	-01	First Issue (Brief Data)
08-Jun-2001	-02	Document expanded to full Product Preview
22-Jun-2001	-03	Minor text corrections to Read/Reset and Read CFI commands and Status Register Error and Toggle Bits.
27-Jul-2001	-04	Document type: from Product Preview to Preliminary Data TFBGA connections and Block Addresses (x16) diagrams clarification Write Protect and Block Unprotect clarification CFI Primary Algorithm table, Block Protection change
05-Oct-2001	-05	Added Block Protection Appendix "Write Protect/V _{PP} " pin renamed to "V _{PP} /Write Protect" to be consistent with abbreviation. Changes to the V _{PP} /WP pin description, Figure 15 and Table 15. I _{PP} added to Table 11 and I _{CC3} clarified. Modified description of V _{PP} /WP operation in Unlock Bypass Command section. Added V _{PP} /WP decoupling capacitor to Figure 10. Clarified Read/Reset operation during Erase Suspend.
07-Feb-2002	-06	TFBGA package changed from 48 ball to 63 ball
05-Apr-2002	-07	Description of Ready/Busy signal clarified (and Figure 14 modified) Clarified allowable commands during block erase Clarified the mode the device returns to in the CFI Read Query command section
19-Nov-2002	7.1	Erase Suspend Latency Time (typical and maximum) added to Program, Erase Times and Program, Erase Endurance Cycles table. Typical values added for Icc1 and Icc2 in DC characteristics table. Logic Diagram and Data Toggle Flowchart corrected. Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 07 equals 7.0). Document promoted to full datasheet.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com